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1. INTRODUCTION

This final technical report is concerned with work done under Grant
AFOSR 78-3635, A Study of Hybrid Computing Techniques for Transonic Flow

Fields. The grant was started on August 1, 1978 and was to run for a period

of 14 months. A three month no-cost extension was granted so that the final

date for technical work was December 31, 1980.

The purpose of this work is the investigation of the use of asymptotic

techniques to derive analytical solutions for use in conjunction with numerical

methods, to improve the accuracy of solutions or to reduce computing times or

both. The two problems chosen for study are

(1) The use of asymptotic far field solutions in viscous flow field

computations

(2) The accurate determination of the location of a shock wave in a flow

field, using composite asymptotic solutions in the neighborhood of

the shock wave.

The first problem is concerned with the use of analytical far field solutions

rather than boundary conditions at infinity to set conditions which the numerical

computations must approach as the solution proceeds away from the body in

question. For inviscid flow fields, such outer solutions have been used in the

past with considerable success; as points farther from the body are considered,

the numerical solution is compared with the far field solution and computation

may be stopped when the difference between the two is within the allowable error.

In the present work, covered in Section 2, far field solutions for viscous flow

fields are considered for axisymmetric, supersonic and transonic flows. For a

given set of parameters, the results allow determination of the length scales at

which viscous effects are important and therefore show the general nature of the

solutions valid at the various length scales. Then, depending upon the accuracy

desired, a decision can be made as to the type of outer solution to be used.

Analytical solutions are obtained for the case judged to be probably the most

importrant.



In the second problem, covered in Section 3, the flow problem chosen

as an example problem is that of steady transonic flow through a two-dimensional

channel in which a shock wave is located. Because several regions of flow must

be considered, adding to the general complexity of the solution, the solutions in

this section are presented in detail.

Because two independent problems were studied, the sections in which

each is considered, Sections 2 and 3, are independent and self-contained.

The work described herein represents only the initial phases of a study

of hybrid computing techniques in that only analytical solutions are considered

for only two problems.
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2. FAR-FIELD DIFFUSION EFFECTS

IN AXISYMMETRIC SUPERSONIC AND TRANSONIC FLOW

A. F. Messiter

Introduction

The propagation of a weak pressure disturbance in a gas which initially

is at rest and has uniform properties is described by the linear wave equa-

tion, provided that the distance through which the wave travels is not too

large. Nonlinear and diffusion effects, however, may eventually become im-

portant; the details differ for plane and cylindrically symmetric flows. The

present work is concerned with axisymmetric supersonic and transonic flow

past a slender body of revolution in the case when nonlinearity is an essen-

tial feature at distances smaller than the distance at which a fully viscous

region appears.

The inviscid far field, nonlinear because shock waves and characteris-

tics are slightly inclined from their linearized positions, was studied by

Whitham () ; a summary appears in his book. (2) A detailed account of vis -
(3)

cosity effects on sound waves was given by Lighthili. In particular, he,

and later Ryzhov (4 ) and others, noted that for cylindrically symmetric

motions a fully viscous region finally develops, which is described by an equa-

tion similar to the Burgers equation but modified because of the geometry.

The velocity field beyond this fully viscous region was studied by

IWhitham, G. B., The Flow Pattern of a Supersonic Projectile, Comm.

Pure Appl. Math., 5 (1952), 301-348.
2 Whitham, G. B., Linear and Nonlinear Waves, John Wiley and Sons, 1974.

3 Lighthill, M. J., Viscosity Effects in Sound Waves of Finite Amplitude,
in Surveys in Mechanics, eds. 0. K. Batchelor and R. M. Davies, Cam-
bridge University Press, 1956, pp. 250-351.

4 Ryzhov, 0. S., Influence of Viscosity and Thermal Conductivity on Propa-
gation of Sound Impulses, P.M. M., 30 (1966), 296-302. Engl. transl.
J. Appl. Math. Mech., J& (1966), 362 -369.
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Salathe(5) Chong and Sirovich, (6) and Sanchez-Palencia-Hubert. (7) Chong
and Sirovich ( 8 also considered the combined effects of diffusion and non-

linearity. For a body moving at sonic speed, these effects have been studied

by Szaniawski ( ) and Ryzhov and Shefter!' 0 ) Review articles by Sichel ( I I )

(12)and by Ryzhov ( 12 ) include discussions of these flows and list additional

references.

The present study has two main purposes. First, for small but nonzero

viscosity and thermal conductivity, the far-field solution for inviscid super-

sonic flow can be modified to include the details of the velocity variation

through the front and rear shock waves. This requires calculation of second-

order solutions for the velocity in the region between the shock waves and for

the velocity distribution within the shock waves, so that the uncertainty in

shock-wave location is smaller than the shock-wave thickness. These

Salathe, E. P., The Fundamental Matrix in Three-Dimensional Dissipative
Gasdynamics, J. Fluid Mech., 39 (1969), 209-2Z5.

6 Chong, T. H. and Sirovich, L., Structure of Three-Dimensional Supersonic
and Hypersonic Flow, Phys. Fluids, 13 (1970), 1990-1999.
7 Sanchez-Palencia-Hubert, J., Asymptotic Study at Infinity of Supersonic
Flows of a Dissipative Fluid, Int. J. Eng. Sci., 14 (1976), 567-584.

8 Chong, T. H. and Sirovich, L., Nonlinear Effects in Steady Supersonic
Dissipative Gasdynamics. Part 2. Three-Dimensional Axisymmetric Flow,
J. Fluid Mech., 58 (1973), 53-63.

Szaniawski, A., The Asymptotic Structure of Weak Shock Waves in Flows
over Symmetrical Bodies at Mach Number Unity, Acta Mech., _ (1968),
189-203.

1 0 Ryzhov, 0. S. and Shefter, G. M., On the Effect of Viscosity and Thermal
Conductivity on the Structure of Compressible Flows, P.M. M., 28 (1964),
996-1007. Engl. transl. J. Appl. Math. Mech., 28 (1964), 1206-1218.

11 ichel, M., Two-Dimensional Shock Structure in Transonic and Hypersonic
Flow, in Advances in Applied Mechanics, 11, ed. C. S. Yih, Academic Press,
1971, pp. 131-207.

12
lRyzhov, 0. S., Viscous Transonic Flows, in Ann. Rev. Fluid Mech., 10
(1978), 65-92.
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solutions are derived, the second-order shock-wave position is obtained,

and a simple multiplicative composition then gives a solution which is uni-

formly valid in the streamwise coordinate. Second, the flow properties

depend on the Mach number, the Reynolds number, and the body slender-

ness ratio, and different approximations are needed for different parame-

ter and coordinate ranges. In particular, at distances where nonlinear

effects first become essential the shock waves are thin and one-dimension-

al; somewhat closer to the body the shock-wave structure becomes two-

dimensional and somewhat farther away the shock waves can no longer

be considered thin. In the existing literature, for both supersonic and

transonic flows, the identification of different approximations and their

domains of validity is incomplete. Several extensions and corrections

are given here, so that the dominant physical effects can be identified

as functions of position and of the nondimensional parameters.

Basic Equations

Dimensional quantities are indicated by an overbar; the subscript 00

refers to values in the undisturbed uniform flow ahead of the body. Thus,

e. g., u, auo, po, .Co, and X are, respectively, the undisturbed values

of the flow speed, sound speed, fluid density, and first and second viscosity

coefficients. The nondimensional flow speed q, sound speed a, enthalpy h,

density p, pressure p, and stress tensor r are defined by

a = La=A

CO CO Oc

(2. 1)
p =-- p -s- = Re -

-2 -2-
0 PuCOuco p0u 0

The Reynolds number Re is based on the body length L and a reference vis-

cosity coefficient specified later to be 2j i + X ; the same reference via-

cosity is used for the Prandtl number Pr and the nondimensional first and

5 _ _ - -. I-.1



second viscosity coefficients .L and X. In terms of these nondimensional

variables, the differential equations describing the fluid motion are

div p q = 0 (2.2)

- -" -e ld
pq'Vq + grad p =Re diVT (2.3)

p q Vh = Re div(Pr grad h) + Re div(T q) (2.4)

where h is the nondimensional total enthalpy. Also

T = i(def q ) + X(div q )I (2.5)

where def q and I are the deformation and identity tensors. A useful com-

bination of the differential equations is

z0
a divq . ...

A perfect gas with constant specific heats is assumed; y is the ratio of

specific heats.

Cylindrical coordinates x = x/L, r r/ L, and e3 are introduced, with

the origin at the nose of the body and x measured in the direction of the un-

disturbed stream. For axisyrnmetric flow the velocity vector is

q (+u.)e x+ ye r (2.7)
- - 2 v2

where e and r are unit vectors; if the body is slender, u + v<< 1.

Again for axisymnietric flow

aT 1 8(rT) 8T 1 8(rT) Tee -"

div T ( xr )e + (- + - ) e (2.8)
ax rr x r ar r r

where, with e = div q,

8uav 8u
T = z L. -+xe T rTr- +

Moc ax Kr rx ax 8r

(Z.9)

T = + T + Te
rr = r + r



Supersonic Far Field with Small Diffusion

For r = 0(1) the flow past a slender body is described in a first approx-

imation by a velocity potential which satisfies the wave equation in the coor -

dinates x and r. For a body of revolution at zero incidence the flow is axi-

symmetric, and the solution is expressed in terms of a distribution of sour-

ces along the axis, with strength equal to the rate of change e S' (x) of the

body cross-section area, where e << 1. As r -- oo, this solution gives

2 x-Br * *
u -- O xr S" (x *)dX *(.0

2wr(Z Br)l/2 0 (x-Br-x 1/2

for x > Br, where B = (M 2 -1)1/ and M = ; the body has been
0o 00 co 0a

taken to have a pointed nose so that S' (0) = 0. The result, however, is not

uniformly valid for large r because nonlinear and viscous effects have not

been taken into account.

In the case considered here, the first error encountered as r becomes

large arises because the characteristics have slopes slightly different from

the undisturbed value dx/dr = B. The weak shock waves from the nose and

rear of the body likewise have slopes slightly different from B. At a still

larger distance, viscous forces would also have to be included in the first

approximation. If the displacement of the characteristics from their linear -

ized locations is 0(l) when I/ r = 0(6), where 6 = 6 ( ), it is convenient to

introduce a coordinate 17 = 6 ( c)r. Since x - Br = 0(l) in the disturbed

portion of the flow, a second suitable coordinate is = x - Br. The equa-

tions are then studied in a limit as E - 0 with the coordinates = x - Br

and 17 = 8 (e)r held fixed. As T7 - 0, the solution found in terms of t and r
-i

must match with the solution (2. 10) which is correct for 1 << r << 6 .

Since the solution (Z.10) gives u : O(c2 r " / ), it follows from the matching

that u = 0(c261/ 2) when r = 0(6 ). The requirement that a nonlinear

term appear in the differential equation for the potential then gives 6 = O( );

4the simplest choice is 6 (E) = c . It is also seen from this equation that

the next terms in u are O(Re ) and O( 8). In the case considered here,

7



8 -1 4
<< Re << C that is, a limit is taken with - 0 and Re -o such that

4 8
c Re - o and e Re -- 0. The coordinates and the expansion for the velocity

are then given by
4

e=x-Br, = r (2.11)

u 4 el7u 1( ) + Re'u u 7) +... (2.12)

The shock wave from the nose of the body is located at s = (1), where

s si9s -- 9 sl (7) +  (C 4Re) -1 sz(77) + ... (z. 13)

The rear shock wave is represented in a similar way. Some general features4
of the flow for e r = 0(l), and in the more distant fully viscous region dis -

cussed below, are shown in Fig. 1; coordinates used here and later are

shown in Fig. 2.

The differential equation for ul, found from Eq. (2. 6) in the manner

described above, is

u I  (-Y+l)m 4

l rB u+u1+ = 0 (2.14)

After multiplication by Y7, the differential equation states that 1 1/2U, is

constant along characteristics dt /di 1/ 2 = (Y+l)M4 B- 1 /2ul. The solution

which satisfies the matching condition for n -- 0 is given by

u, = -(ZB?7)l/2F(X), X k + kl/ ZF(X) (2.15,16)
X

21r * 1/*.(X)/ 1 (2. 17)
0 (X-x)

where k = ( 4+3)M/(B/2 . This is exactly Whitham' s solution. (1, 2) The

shape X = X (77) of the front shock wave is most easily found by use of the

known results that a weak shock wave approximately bisects the angle be-

tween upstream and downstream characteristics; from Eqs. (2. 13) and (2. 16),

it follows that

1 1/
, (r0) k r- F(Xs) (2.18)

8



The result found for X (ri) is given implicitly by
s

x
1 1/2 2-k r F (X ) =f F(X )dX (2.19)

0

Evaluation of 1 near the shock wave requires an expansion in the form

s2
l(g 77) Re U14 (9 sl 0 + ... + M -9 s)g (9 s1, 0 + (2.20)

where u ( l' 9 1) is found by differentiating the solution (2.15) for ul and

the definition (2. 16) of X, and combining with the derivative of Eq. (2. 18)

for the shock-wave shape; the result is

4B d
=l - +n F(X ) (2.21)

± sl' 7 (-Y+l) M4 d71

For the calculation of u2 , the first approximation to the diffusion

terms is obtained using v - - Bu and 3u/ar - - B8u/ax. From Eq. (2. 4)
4 -1it is found that changes in h along a streamline are O(c Re ); entropy

0
changes are also of this order. It follows from the vorticity equation,

found by taking the curl of Eq. (2. 3), that the vorticity is O(c /Re), and

so the flow remains irrotational to the order required here. The differen-

tial equation for u 2 is

u 2  
(y+l)M

4

2u21 + 72 + __ 10(l? I+v1)4u(.2B (2) B Pr 00 t (

In the right-hand side, the viscosity coefficients appear in the combination

Z L + X -1, the reference value having been taken to be 2o + X . Equa-
1/2 

0 0

tion (2. 22) can be rewritten as an equation for r u2 in terms of coor-
1/2

dinates n1 and X, where X is constant along a characteristic. The solu-

tion can then be found as

M4 F" { 1/2
uZ Pr l/ 2( -721 22 + 1/2F

Pr)B(2B)l /2(I-k 1/2F' )k2F' 2 1-k F1/2F
(2.23)

9



I.

where F' = F' (X); an arbitrary function of X has been chosen as that

u2 remains bounded as 17 - 0.

Shock-Wave Structure and Location

In order to find the second term (1) in the shock-wave shape, it is

necessary to obtain both first- and second-order solutions for the velocity

distribution within the shock wave. Coordinates x and y are defined to be

of order one at points within the shock wave when r = O(E -4) and are meas-

ured, respectively, normal to and along a curve which remains within the

shock wave as c -- 0 and Re - co (Fig. 2). This curve is chosen such that

the normal velocity component is sonic at every point, and its angle of in-

clination 0(n) from the radial direction is related to the expansion (2.13) of

s (7n) by

ctn (07) = B + e4 9s'() + Re- ,s'(n) + ... (2.24)

The coordinate transformation from x, r to -, y can be carried out in three

steps. First, x and r are replaced by - (n) and Y7; next, at each point5

the coordinate directions are rotated through the angle 0(0); and finally,

the coordinate measured normal to the shock wave is stretched by a factor

As(y) << 1, where A (y) is a suitably defined shock-wave thickness, as ob-

tained below. The transformation of derivatives can be sunmarized in

the form

*- daa 1 4 a x s a
sn 1 A- + c cos ( (2.25)

B s

8 1 c 8 +  sin 0 ( a z dA s (2.26)
8r s - c s -d8y Ady

The velocity perturbations U and V, in the Z and y directions respectively,

are

10



II

U = u sin 0-v cos (2.27)

V = ucos + v sin (2.28)
8

Changes in entropy and in total enthalpy within the shock wave are O(,E).16
The vorticity is extremely small, of order 16 since the shock-wave

-1 4
curvature is very small, and it follows that A V - c U The differen-

tial equation for U is found to be

(ctn2B 2) -U YN -B A - x" (y+l) i- uu..x
M3 s s

- r +2M U -M x U- U_ +
M 2 00 co0 A s dy A 2Re xx

(2.29)

where d7/dy = M "I . Equation (2. 29) is to be studied in the limit as c -" 0GO

and Re - co with coordinates 5Z and y held fixed.

The velocity U is represented in the form

U t '92(17)  1
-- - -l+u 1  + - +-- 2 (;y) +... (2.30)

1 c 4R e () 4Re

where 2A is the first approximation to the jump in U across the shock wave,

and , (n) is given by Eq. (2.18). The shock-wave thickness A used in the
al s

definition of Z is found by equating the coefficients of the nonlinear and diffu-

sion terms in Eq. (2.29), with a factor of two included for later convenience.

Thus A and A are given by

A = C 4 ( A 2 )xasl + 1 (2.31)
u 2 (2B7)1/2s (y+)A Pr Re

As for a one-dimensional shock wave of the same strength, e4 A is the firstU

approximation to the difference between the normal velocity component

ahead of the shock wave and the critical sound speed based on that velocity.



Since - has been defined such that the normal velocity component is sonic at

Z 0, it follows that U1(0) = 0 ; similarly, for the second approximation it
is seen that U (O) -- 0. As Xx - - oo, U, - 1 and Uz - t' /t Il . f;

The differential equations for U 1I and U 2 are

U 2U UL = 0 (2.32)

L g a CA
U -Z (U1u J) z = A {(( + d- )(-I + U1) + - - U- - } (2.33)

25B -2 "X7A 8 -7

where A = 2B(y+) M e ReA S A = 0(1). The solutions which satisfy

the required boundary conditions are given by

U = - tanh Z (2.34)

1 (coh2XI x 7 (e25Z _ 2X~ -1) d nF
-( cash2  d3A hU 2 ( ) = (e x - 1) - In F(X,)

d -r I(eZX + -"f~ i) 7 [ /F ] ,

- {(sinh 21n(+e) +

si
- g (x + sinh Z cosh R-) (2.35) !

sl

The result for U 1(a, with the definition of A g given above, is the familiar

solution for a weak one-dimensional shock wave. As X- oo, the solution

for U( ) has the form
2!

d 2 (7 (.36U2 A(2 - l) ln F(X (2.36)

After the coordinate transformation is taken into account, the first term in

U is found to match correctly with the result of Eq. (2. 21). Matching the
2 -

constant terms of order Re'l in the expansions (2. 12) and (2. 30) of u,

evaluated for -- and for ' - o respectively, involves terms which appear

12



in Eqs. (2.20), (2.23), (2.30), and (2.36). The condition obtained gives a

first-order differential equation for the second term g s 2 (n) appearing in

the shock-wave shape (2.13):
4 F

d F + -_ - (i +/ F" +L - ( 1 - kF'/2F.

s2 P r 2B(l -kiO 2 ' F

+ (i -k /2 F ,  n( - (2.37)
2kil 112 F1 2

where F, F', and F" are evaluated at the shock wave X = X (r). As n/ -" 0,1/2

F(X ) = O(X 1 2) and X = O(), and the right-hand side of Eq. (2.37) is

O(r-I). Integration of Eq. (2. 37) should be carried out from rT : 0, so
that g s2) is bounded as Y7 - 0.

A solution for the velocity u which is uniformly valid for all g can be
4

constructed as the product of e 4 u1 with suitable factors which account for

the front and rear shock waves. For the rear shock wave, a solution can be

derived in a form analogous to Eq. (2. 30), in terms of a coordinate Z
r

analogous to x. The composite solution then can be written as

(I 4( + tanh 2(l - tanh -r)ul(4, r?) (2.38)

To the degree of approximation needed here, the coordinate transformation

given by Eqs. (2.25) and (2. 26) reduces to

1
M A (Y )-) 4 - s (TO - - s (n), y = M r? (239)

e4Re so 

where, as shown in Fig. 2, - and y are measured, respectively, normal to

and along the curve : sl(T) + (c 4Re) 1 99 ); a corresponding definition

can be given for x r .Since s has been calculated, the error in the locations2

of the curve g = g s(1), and therefore in the origin for X, is of higher order

than the shock-wave thickness A O(C 4Re ).
s



Diffusion Effects Elsewhere

Small values of X identify characteristics which intersect the body near

the nose, which has been assumed pointed so that S"(x) remains finite as

x -" 0. Thus for X << I the flow differs only slightly from the flow past a

slender circular cone having surface r = c X x. The definition (2. 17) gives

F(X) - 2X2X1/2 as X - 0, and the first approximation (2.18) to the shock-

wave shape shows that X (17) 2--k X 17 as r7 - 0. The expansion (2.13) for
s 4

the shock-wave shape becomes

(,3) - 2kX 4" _A(l+ ) -2 +3n3) + (2.40)s 4 Pr 3(~)2 4 2
3 (ye+l)2M4 "

4 -1
where A = (c Re) . The second term remains small in comparison with

the first term provided that Y7 >> A. As ri -" 0 the largest terms in the

differential equation (2. 29) become

2BE 4  ti/A 8(U/A)
2 1+ (U2 + 2M (.1
u(y, ) A2  a(y/As) (2.1 +M)

Co U

Since both A and A approach constant values as 17 - 0, the right-hand side
u s

is small, and the first approximation leads to the one-dimensional velocity

distribution U - Au(-l + U1), only if r7 >> A. If rl = O(A), and so

r = O(C 8 Re'l), all the terms shown in Eq. (2. 41) must be retained in the

first approximation. The differential equation obtained is related to Burgers'

equation, but contains an additional term because the flow is axisynmmetric.

As Y7 - co, X (n) -. X = constant, where X = X defines the charac-o 0

teristic at which ul = 0. Then Eq. (2.19) gives

x
2 2 *

F (X) - 2. f F(X*)dX (2.42)5 1/2 0

so that F(X ) = O( -'/4). Also (sI- 1/4A) Au = O(4' 3/4), and
4 I

A = O(A 734),where again A = (E4Re) 1 , proportional to the ratio of second-

order to first-order terms in the preceding results. It follows (Fig. 1) that

14



the shock-wave thickness is no longer small in comparison with the distance

between the front and rear shock waves when 17 = O(A -2 Then also

= O(A )1/2) and u = O(k 4 A3/2) in this fully viscous region. The largest

terms in the differential equation (2.6), all of the same small order of

magnitude, give an equation

(y+I)M 4  M4

C4(2u +u) + BO uu( P - T u (2.43)

which, like Eq. (2.41), is similar to Burgers' equation.
-2

At still larger distances, for 17 >> A , the linear terms are all of the

same order of magnitude if = O(A /2 ?/2), and the nonlinear terms are
-4 -3/2

smaller provided that A u << 1. The result is the one-dimensional
2 1/2 4 3/2 -1

diffusion equation for (A T) (C A ) u. Self-similar solutions have

the form

( 4A3/2)'1u = (A 27) g(t) (2.44)

where t = /77 and g satisfies the ordinary differential equation

M4

( +r) g +2 tg +ag = 0 (2.45)

The nonlinear terms are of higher order if o > - 1/2. If at large dis-

tances the body appears as a point source, the velocity potential according

to linear inviscid-flow theory is proportional to e (x 2-B2r2)1/2 for x > Br.

Therefore u = O(4 4 V)3/2 -1/2) as x(Br) - 1 - 0. A solution of the form

(2.44), which includes the effects of viscosity, can match as t - m with this

potential-flow solution if a = 3/4; this is equivalent to the results of Refs.

5 and 6. The solution for g(t) can be written in terms of confluent hypergeo-
(13)

metric functions, whose properties are known ( . The result is exponentially

13 Abramowitz, M. and Stegun, I. A. (eds.), Handbook of Mathematical
Functions. National Bureau of Standards, 1964.
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small as t - o (upstream) and is of order t " 3/2 as t +c (downstream).

The integral of f(t) over the range - o < t < co is found, by direct integra-

tion of the differential equation (2. 45), to be zero. The second term in u is

the simple dipole solution for a = 1, which is exponentially small both up-

stream and downstream; the nonlinear term is still of higher order. If

there were no net mass outflow of order c 2 from the neighborhood of the

body, the solution for a = 1 would be the leading term in u.

Transonic Flows

The definition (2.11) of 7 and the expansion (2.12) for u could have been

modified so as to show explicitly the dependence on the parameter B. The

orders of magnitude for r and u would again be found by specifying that a

nonlinear term must appear in the differential equation (2.14) and that the

solution for u must match asymptotically with the solution (2. 10). If M

is then allowed to decrease toward one, so that B -- 0, the nonlinearity

appears for r = O(c 4B 3), with u = 0(c B4 ), whereas the linearized flow

description, in terms of a source distribution along the axis, gives the solu-

tion for r = O(B 1 ). These distances are no longer distinct when B = O(c),

corresponding to the usual transonic small-disturbance theory derived with

the similarity parameter K = (M c -1)/C held fixed as C - 0 and M - 1.

For B = O(E), then, u = O(e ) and the first approximation satisfies the non-

linear transonic small-disturbance equation in the variables x and r = f r.

The ratio of second-order to first-order terms is O(At), where At = (C 2Re)-1

for the transonic limit; the shock-wave thickness is also of this order.

At small values of r such that r = O(A t), the shock wave is no longer one-

dimensional but is described instead by the "viscous-transonic" equation,

which is the transonic small-disturbance equation augmented by the diffusion

term proportional to u x . At large values of ?, again as B - 0, the previous

solutions for shock-wave location and thickness give O B -3/4r1/4)

-1 -1/ 41 34 sl
and A e( B 'Re r/). These two lengths are no longer distinct if

r =O(4BRe2 ) and = ( B" Re1/2). In the fully viscous region defined

in this way, the velocity is u = O( -2 B Re- 3/2). For B = O(e), the solution

16



for ' = 0(1) no longer has the form shown by Eqs. (2.15) through (2.17), but
for r >> 1 the quantities land A 3 have the same power-law behavior as

for B >> E, now with unknown numerical factors. The fully viscous region
for B = O(c) is then defined by r = O(A ) and =O( and can again

be described by the modified form of Burgers' equation required for axi-

symmetric flow.

If the free-stream speed is exactly sonic, the inviscid-flow solution

as r " co has the self-similar form u = C r f(X r /7) Then
4 -16/7 -1 1 -l 2--2)uux =0(C and Re u : O(Re C r )as r- co. There now is a

xx -1 -2...b/7
single shock wave having thickness A O(Re c r ), whereas the

-4/7inviscid-flow solution implies x = O(4 ). By either comparison it is seen

that the fully viscous region, described by the viscous-transonic equation,
-7/2

appears for r = O(t 7 ). The self-similar solution then is correct for

< r << a/2 If now B is increased from zero, a linear term u
t x

will first contribute to the description of the fully viscous region when

B2 is no longer small in comparison with u; for this condition

B/c = O(A3/2). The previous result r = O(c4 B IRe 2 ) for the distance
t the fully v i s c ou s region is still correct for B/E as small as O(A3/2

but is replaced by O =(A7/2) for B/c << At/2 The orders of nag-tt
nitude for the locations of regions in which different approximations are

required are shown schematically in terms of Mach number in Fig. 3.

For subsonic flow with M 0 slightly smaller than one, the simi-2 CO2

larity parameter is K = (1-M )/C , and the transonic small-disturbance
002 2

equation is obtained in coordinates x and 7 if (l-M)/ = 0(). For

>> 1, the flow is purely subsonic, and the body (if closed) appears as-2 ~3
doublet with c r u equal to a function of x/ . The linear term

2 2 2--4(1-M 0)ux is then of order (1-M )e r , whereas the diffusion term is

proportional to Re "u = O(Rel'c27-5). That is, the diffusion termxx

decays faster and never appears in the first approximation as r - co.
2 2I, instead, 0 < 1 -M << C , the first approximation for 0(l) isc1

17



2 2 2 -10/7the sa am eaforM 1, and-(-M )U 0(-M )f F as .7 o.
thX

This term is no longer small in comparison with the nonlinear term

when u and (1-M ) are of the same order, for r = O(K'7/6). The
CO -7/6shock wave then extends to a distance 7 = O(K. ) and its thickness

remains small in comparison with A x = O(r4/ ) provided that

K-7/6 << 7Re7 , i.e., (l-M)/2  >> A. In other words, the
doublet describes the far field for (I-M 2 )/C2 >> a-3 and a fully viscousdoubAlneafultvscu

00 t
region appears for large values of r only in the very narrow Mach

2 4 .3
number range (1-Mo) = O(E Re-).

Sample numerical values indicate that viscous effects are very small,

as expected, and in some respects become less important as the Mach num-

ber decreases toward one. A convenient pair of values is c = 0. 1, Re = i06.
4

At supersonic speeds, nonlinear effects become essential for rl = E r = 0(l),

i.e., for r = 0(10 4). At this distance the shock-wave thickness is 0(A),

where A = (C4 Re)-I = 0.01; the fully viscous region appears for 7 = O(A 2),

i.e., for r = 0(10 8). At MC = 1, the shock-wave thickness for 7 Er = 0(1)

is O(At), where at = ( 2 Re)f 1 = 10"4, and the fully viscous region appears

for ? 0(At2), i. e. , for r = O1015). The solutions for M., = 1 are correct

in the extremely narrow Mach-number range IBIZ/e = O(A , i.e., IM -

= 0(10 14) Some of these features are apparent in Fig. 3.
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Figure 1. Flow regions for a 4E Re)- << 1.
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3. LOCATION OF A SHOCK WAVE IN LOW REYNOLDS NUMBER FLOWV

T. C. Adamson, Jr.

Introduction

It is well known that in numerical solutions of supersonic flow fields

the location of a shock wave is known only to within three or four mesh

points when the so-called shock capturing technique is used. That is, the

shock wave appears not as a discontinuity, but as a thick region in which

flow properties vary relatively rapidly. Often this is not a serious drawback

because only a single shock wave occurs and it is not necessary to locate

the shock wave in the flow field more accurately in order to calculate forces

on the body to the desired accuracy. The fact that the pressure distribution

at the intersections of the shock wave and the wall is spread out over a

region large compared to the thickness of the shock wave is not in itself

incorrect in view of the fact that this is what occurs in the interaction re-

gion caused by the intersection of a shock wave and a boundary layer; if

the extent of this expanded pressure distribution is not too much different

from that of the interaction region, the errors incurred may not be prohib-

itive. However, before accurate results using known solutions in the inter -

action region can be calculated, it is necessary to locate the shock wave

accurately. Moreover, in flows over complex bodies and in internal flows,

where complicated shock wave patterns and reflections are important, such

a lack of preciseness in location of the shock wave does not suffice.

One of the methods for calculating the location of the shock wave

accurately is that of shock fitting (e.g., see reference 1). Here, at each

iteration of the solution, the shock wave is positioned such that the proper

(1)Hafez, M. M. and Cheng, H. K., Shock Fitting in Transonic Flow Com-

putation, Transonic Flow Problems in Turbomachinery, eds. T. C. Adam-

son, Jr. and M. F. Platzer, Hemisphere Publishing Corp., 1977, 328-335.
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jump conditions are met and the solution on either side of the shock wave

merges with the known numerical solution. Unfortunately, the logic in-

volved in this calculation is complicated for even a single shock wave and,

at least in the present form, too unwieldy to consider for complex shock

wave patterns. It is clear that a simple method for locating the shock wave

would be of considerable value.

This section covers the initial investigation of a method different from

those considered before, for locating a shock wave. It is applicable in

those cases where mass, momentum, and energy are conserved in the

"thick" shock wave given by the numerical solutions. The essential idea is

that the thick shock corresponds to a shock wave in a relatively low Reynolds

number flow. An asymptotic solution for, say, the distribution of velocity

through a shock wave is to be compared with the numerical solution to give

the values of the necessary parameters. Then, the analytical solution is to

be used to locate the shock wave in the actual relatively high Reynolds num-

ber flow by simply using the solution valid in the limit as Reynolds number

tends to infinity. In actuality, because the location of the sonic line within

the shock wave corresponds to the location of the shock wave in the real flow

case, where the shock is very thin, the calculation reduces to finding the

dependence of the location of the sonic line on the Reynolds number. As it

turns out, in the flow problem considered there is a range of parameters

for which the sonic line (within the shock wave) is independent of the Rey-

nolds number to the accuracy desired. In this event, the shock wave is

very easily located by locating the sonic line. For smaller Reynolds num-

bers, the equation derived for the first order correction to the location of

the shock wave indicates an apparent dependence upon Mach number. How-

ever, this equation contains a term which has not been evaluated; there is

a possibility that the final equation will be independent of Reynolds number.

In order to test the utility of the proposed method, it is necessary to

choose a flow problem for which solutions in the form of numerical compu-

tations can be found relatively easily and for which analytical solutions are

known. The test then consists of comparing the shock locations found using



on the one hand the numerical solution in conjunction with the shock wave

locating method and on the other hand the analytical solution. The test prob-

lem chosen is that of steady, transonic flow through a 2 -dimensional channel

with arbitrary wall shape. Solutions for inviscid flow upstream and down-

stream of the shock wave are known in the form of asymptotic expansions
(2, 3, 4)uniformly valid to the second order, both for steady and unsteady

flow. It is necessary to modify these solutions somewhat and to add a higher

order term and solutions for the structure of a shock wave to complete the

relations needed here. Since only the flow downstream of a sonic nozzle is

really needed for testing purposes, the numerical computations should not

be very difficult.

In this report, then, we first present the analytical solutions for the

inviscid flow, to be used as a basis for comparison. In these solutions, the

shock wave appears, of course, as a discontinuity. Next, we consider the

same channel flow, but now for the case where the Reynolds number is rela-

tively low, but still large compared to unity. In this case, the shock is rela-

tively thick, and it is this solution which is to be compared with the numerical

solution to find the equivalent Reynolds number, and other necessary parame-

ters. It is also this solution, then, which is to be used to find the change in

location of the shock wave as Reynolds number becomes very large; the

change is used in correcting the numerical solution.

It should be noted that the method of computation used has much to do

with the form of "thick shock wave" found in numerical computations. That

is, with a straightforward finite difference scheme, one might find a monotonic

(2)Messiter, A. F. and Adamson, T. C., Jr., On the Flow near a Weak Shock
Wave Downstream of a Nozzle Throat, J. Fluid Mech., 69 (1975), 97-108.

(3)Richey, 0. K. and Adamson, T. C., Jr., Analysis of Unsteady Transonic
Channel Flow with Shock Waves, AIAA J., 14 (1976), 1054-1061.

( 4)Adamson, T. C., Jr., Messiter, A. F. and Liou, M. S., Large Amplitude
Shock-Wave Motion in Two-Dimensional, Transonic Channel Flows, ALAA J.,
16 (1978), 1240-1247.
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decrease in velocity, for example, which resembles the distribution found in

a shock wave; with other formulations, an oscillation may be found in the

velocity in the region of the shock. In the latter case, the oscillations can be

removed with the addition of an artificial viscosity and it is supposed that

this would be done if the present method for locating the shock wave were to

be used.

Problem Descriptions - Solutions for Inviscid Flow

We consider a steady transonic flow in a two-dimensional channel. A

sketch illustrating the coordinate system and notation used is shown in figure

(1). The specific case chosen here is that where the flow accelerates through

a sonic throat to a supersonic velocity; at some point downstream of the throat,

the channel walls become parallel to each other and terminate in a plenum

chamber, at which a back pressure is applied such that a shock wave forms

in the channel.

The gas is assumed to follow the perfect gas law and to have constant

specific heats. The flow upstream of the shock wave is isentropic, and the

shock itself is weak enough that a velocity potential may be used to the order

desired. Coordinates x and y are made dimensionless with respect to the

throat half width, L, and velocity components with respect to the undisturbed

critical sound speed, a* . (Overbars denote dimensional quantities.) The

pressure, p, density, p, and temperature, T, are made dimensionless with

respect to their critical values, and the enthalpy, H, is referred to a* 2

The wall shape is written as follows, for symmetric channels, where

E<< 1:

Yw (1 + 2 f(x)) (3.1)

where f(O) = V (0) = 0. Thus, C may be related to the radius of curvature

of the walls at the throat, x = 0.
2

Composite solutions, uniformly valid to order e , may be written for

the flow under consideration as follows:( 2 , 3
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u = 1+ Cu1 + C u2 +... (3.2a)

2 5/2 + (3.2b)v C v_ + C +(.2b
2 y

2
p = 1 - ECuYI - I Yu2 + (3.2c)

p = - Cu1 - 2(u 2 + 1) + 22 1 (3.2d)

2

T-1) c 2 (Y-1)(u 2 + +... (3.2e)

where y = p/C v is the ratio of specific heats and where

u1 =_+ ( )flx)+C (3. 3a)

2

2  f" + x  v2 = f'y (3. 3b, c)

h = -If" +u.,(2,- 3)] +u2 (3.3d)

* 1/2
= 4f"0[(Y +1)u 0 ] cos (n ry).

n=I (,rn) 3

exp{-nr/ x > x s

*
0 x < x (3.3f)

sos
so = x - •( . g)

In eqn. (3. 3a), Cw is an arbitrary constant determined by the value of the

velocity at the throat; i. e. if,there, the flow is subsonic or supersonic,

Cw = 0. The constant C 2 is arbitrary and may have different values up-

stream and downstream of the shock wave. In the equations above,

V = df/dx, etc. Also, f'0 and u1 0 are ' and the positive value of u ,
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respectively, evaluated at x the zero-order approximation to the location

of the shock wave, x , where x is expanded as follows:

x s s + ex so s C 3 / 2 (y) + C2 + (3.4

That is, dxs/dy = [v]/[u] = o(c /2/C) = O(C 3/2), where the square brackets

indicate the jump in the quantity enclosed across the shock wave at the point

Y and x (y), but it can be shown 2 ) that there is a term of O(c) in the expansion.

Hence, in eqn. (3. 4), x and x are constants for steady flow. It should be

noted that in this inviscid flow solution, the shock wave is a discontinuity.

The quantity which appears in eqns. (3.2b) and (3. 3b) and which is

defined in eqns. (3. 3 e) and (3. 3f) is an additional potential function needed in
(2)

the neighborhood of the shock wave. That is, it can be shown that the chan-

nel flow solutions satisfy the jump conditions across the shock wave to first

order but not in second and higher order terms. Hence, it is necessary to

consider a region of order c 1/2 in thickness in the neighborhood of the shock

wave; in this region the flow must adjust from the conditions required by the

shock wave to those associated with the outer channel flow. In general, be-

cause the flow is supersonic upstream of the shock wave, = 0 there and

an adjustment region is needed only downstream of the shock wave. There,

x (defined in eqn. (3. 3 g) is 0(0) and as shown in eqn. (3. 3e), goes to zero

exponentially as x* increases. As mentioned previously, the solutions shown

in equations (3. 3) are composite solutions; the solutions in the inner region

have been included and the solutions, as written, are uniformly valid to order
2

C throughout the channel.

The location of the shock wave may be found in either of two ways. On

the one hand, the composite solutions may be used in conjunction with the jump

conditions across the shock wave. On the other hand, conservation of mass,Zw
enforced by equating f0  p udy evaluated upstream and downstream of the

shock wave, may be used. The former method involves the evaluation of

higher order solutions in the inner region if higher order approximations to

the location of the shock wave are desired, and so the latter method is employed
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here. As pointed out in reference 2, it is necessary to calculate the

jump in entropy across the shock wave and pu to order c if one wishes

to calculate xsl. In addition, u 3 , the third order outer solution for u

must be known; again, if the mass flow is evaluated far enough upstream

and downstream of the shock wave, then inner solutions are unnecessary.

The solution for u shown below has been found using the methods des-

cribed in reference (2). The required equations for p u and the jump in

entropy across the shock wave, also shown below, are essentially those

given in reference 2; a few corrections have been incorporated:

4 2 u 1 2

- (N+ 1)(1f"(-(- - Yi +T y I + g (3. 5a)

3

x (Y+ ) - u f" 1 Y(12 -y) 3

g (+ i -3) " + [_' 362 u
Z f2C2 - LZ + C] (3. 5b)

3 2 u 1  90 2u2 6 (y+l) 2(-y+I) 3 3.b
1

a -sh 3 L 3 4 2 ( 1 2 2

(-Y+l) 3 u 1 +C Yu 1 0  03Y1

2x lu +2C 2 /u + ... (3. 5c)

Pu 2 O + 12 ) u2_ C (3y++I) [u u + 3 3
u 1 2 2 6 1

2 2

.4 (Y+l)[uu +u ( u 2 u2 + v2
1 3 2 1 2 2 2(Y+l)

+ (2-v)(1-2 v) 4
8 1+ ' '  "ASsh (3.5d)
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where the entropy, S, is made dimensionless with respect to the gas constant,

If eqn. (3. 5d) is integrated at x = 0 and at x = X, say, where X > xs,
2

and the results are equated, the terms of order e reduce to eqn (3. 3a),
3 4and the terms of order e and c give, respectively,

C C2 - (3.6a)2 d 2u3 110

C = C 2y u 10 - 2YX u 1Ou 1  - 2yu 1C2u (3.6b)

where u1x0 refers to the value of ulx(x so) immediately upstream of the wave.
Thus, setting the constants C2d and C 2u, equivalent to setting the pressure

to second order at points upstream and downstream of the shock wave, allows

one to calculate u0, from eqn. (3.6a); therefore, from eqn. (3. 3a), x

can be calculated. Next, setting C3d and C3u, equivalent to setting the pres-

sure at the same points to third order, one may calculate x from eqn.sl

(3.6b). Thus, with the inviscid flow solutions shown here, the position of the

shock wave can be calculated to first order accuracy.

Solutions Including Structure of the Shock Wave

The solutions in the previous section are found under the assumption that

the shock wave is a discontinuity, and are valid as long as the thickness of

the shock wd.ve is small compared to the order of the accuracy to which the

shock is located. That is, if the order of the dimensionless (with respect to

the throat half width), thickness of the shock wave is given by L , then, asS

indicated in the following sketch, x s is known to order e as long as L s <<

-- 6X5

H'O C K WAVYT
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In order to relate the orders of L and E to be used in the present
S

application, it is necessary to estimate the thickness of a shock wave

"captured" in a typical numerical computation relative to the character-

istic length in the problem under consideration. For example, in typi-

cal computations of flows over airfoils, the shock thickness can vary

from roughly three percent (Reference 5) to eight percent (Reference 6)

of the chord; in computations of the flow through a stator blade, with

artificial viscosity added, this thickness can be as high as 12 percent

of the chord. (7) If the effects of adding artificial viscosity are neglected

for the present, it appears that a good estimate of the thickness of the

captured shock wave is five percent of the characteristic length in the

flow direction. In the present case, the throat width is the character-

istic length, i.e., L 0.05(2L), or
s

L
L = s 1 2L = (37)L r - 10

If the Reynolds number, Re, (based on L and critical flow conditions)

and the Prandtl number, P are written in terms of the longitudLnal

viscosity, then following Illingworth(8 )

(5)Yoshihara, H., Finite Difference Procedure for Unsteady Transonic Flows:
A Review, Transonic Flow Problems in Turbomachinery, eds. T. C. Adam-
son, Jr. and M. F. Platzer, Hemisphere Publishing Corp., 1977, 139-162.

(6)Caughey, D. A. and Jameson, A., Calculation of Transonic Potential Flow-
fields About Complex Three-Dimensional Configurations, Transonic Flow Prob-
lems in Turbomachinery, eds. T. C. Adamson, Jr. and M. F. Platzer,
Hemisphere Publishing Corp., 1977, 274-293.

(7)Farn, C. L. S. and Whirlow, D. K., Application of Time-Dependent Finite
Volume Method to Transonic Flow in Large Turbines, Transonic Flow Prob-
lems in Turbomachinery, eds. T. C. Adamson, Jr. and M. F. Platzer,
Hemisphere Publishing Corp., 1977, 208-227.

(8) fllingworth, C. R., Shock Waves, Modern Developments in Fluid Mechanics,
High Speed Flow, Vol. I ed. L. Howarth, Oxford Press, 1953, 105-137.
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L - (1 +L. ) (3.8a)
Re c (y+1) Pr

! 4k (3.8b)s

I oi

where equation (3. 8b) defines the parameter ks, to be used hereafter as

being of the order of the thickness of the shock wave. It is seen, from eqns.

(3. 7) and (3. 8b), that the value of k corresponding to the estimated thickness

of the shock wave found in numerical studies is k - 1/40 and further, from5

eqn. (3. 8a), that for P = 1, Re E a 40 y/(V+1). Finally, a typical value for
r

E is 1/10.

It appears from the above estimates, that solutions from either of two

limit processes might be useful in applications to numerical problems. The

two possibilities are

2 - 3
(a) k = O(E ); Re = 0( )

5

-2(b) k = 0(e); Re = 0(c ).5

In case (a), setting k = me with m being a constant of order unity, a nu-

merical value of 2. 5 for m would result in the desired relative values of k s

and E. In case (b), with k = me, the corresponding value of m is 1/4.5

In the following section, solutions for case (b), ks = m, are con-

sidered. This case was chosen for the initial study because solutions are

valid for case (a) also, in the present application. It will be shown that it is

possible to obtain the desired solutions in terms of an integral which can be

evaluated using known functions.

(a) Channel Flow Solutions; k = me5

The solutions considered here are for a flow in which the longitudinal

viscosity is large enough that its effects are found in the second order outer

channel flow solutions. In addition, it will be seen that the shock wave is
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thick enough that the effects of streamline curvature are found in second order

solutions for the shock structure; as a result, the Rankine-Hugoniot jump

conditions do not hold across the shock wave. These two effects cause for-

midable difficulties in obtaining higher order solutions.

The governing equations are the Navier-Stokes, continuity, and energy

equations for steady flow. Thus:

U + vu - R(u) (3.9a)x y" P R e

uv + vv R(v) (3.9b)
x y pRe

u.H +vH++ R(H (3. 9 c)
: (up + pRe

where

R )=(iax ') x + (4(u y + v y] (3. 10 a)

R(v) = [ +cu L+ v -(- u )u] (3. lOb)
x yx 3 xy

y 2
R(H) = (~H I+(-H]I + (u2  2

Pr Pr~~Kv

- L .- 241, =v. + (u. + V) (3. 10c)
3x y y x (.lc

The dimensionless longitudinal coefficient of viscosity, Reynolds number,

and Prandtl number are defined as follows where ' is the bulk viscosity and

4 the usual viscosity coefficient;

U - (3. H.la)

34Z/(A) ) = A/(A)* (3. 11b)
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Fa

e p (3. llc)

Pr /X (3. lid)
p

The equations of state and relationship between enthalpy and temperature are,

respectively, in dimensionless terms,

P = pT (3. 12a)

H T (3. 12b)
Y-l

Finally, three equations which are of importance in the following analysis are

the gasdynamic equations and those governing the vorticity and entropy:

(u 2 -a2 )u + uv(u +v ) + (v2- a )v
x y x y

- [uR(u) + vR(v) - (,y-l)R(H)] (3. 13a)
p Re

1
un x +vQ = -0(u+v ) + -(T S . TS)

'C y y x xy y x

+ _ [(R(v) (i ] (3. 13b)

Re p x p y

pT(uSx+vS) _ (H) (3. 13c)
Re

2
where a = T and £0 = v - u are the dimensionless speed of sound with

x y
respect to a* and z component of the vorticity vector respectively.

Following the same methods employed in obtaining the inviscid flow
solutions,2) one can find the outer channel flow solutions valid now for the

case k = me. In order to simplify the calculations, Pr = I and p' = 0

are taken to be the case; more general values will add complexity but not

change the fundamental conclusions. First, if the stagnation enthalpy, H to
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is expanded as follows,

-22 2 2

+V u+

H H+u + (yl + jI~t ' (3.14)
t Y-l 1 y-1

where < , then from the governing euations forH

U-j + v(H ) = ... (u) + vR M + R(H) (3. 15)
t x t py

9/2 2(NI

one can show that =: , so that T a can be calculated from the

equations:

(u v ) + O(C9/2) (i
+ ,,u~J.2 1-2 )  \+Y1. +0(3 16)

2 2

3Also, from eqn. (3. 13c), one can show that As = O(E and from eqn. (3. 13b)
3 4 3

that vx - uy = O(k s ) = O(E ) so that to order c a velocity potential

exists. Finally, the boundary conditions are given by the relation

v(X, +y) Y +y u(x, +y_) (3. 17)

where, now, Yw includes the displacement thickness of the boundary layer

for the low Reynolds number under consideration. Now, because an inter-

action occurs at the intersection of a shock wave and a boundary layer (as -

sumed to be laminar here), it is important to ascertain the effects of the

interaction on the displacement thickness. In order to estimate these ef-

fects, the solutions for the flow within the boundary layer in the interaction
(9)region, given by Brilliant and Adamson , may be used with the orders of

the velocity perturbations valid outside the boundary layer found in the

present calculations. It is not difficult to show that at least in lowest order,

(9)Brilliant, H. M. and Adamson, Jr., T. C., Shock Wave Boundary-Layer
Interactions in Laminar Transonic Flow, AIAA J., 12 (1974), 323-329.
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the increase in v due to the effects of an interaction between the shock wave

and the boundary layer is small compared to the increase caused by the

change in displacement thickness over the extent of the interaction region.

Moreover, when the solutions valid within the shock wave itself are con-

sidered, it will be seen that through O(E 5/), the expression for v is sim-

ply a continuation of the outer solution for v and thus satisfies the undisturbed

flow boundary conditions at the wall to the same order. This is not the case

for the term O( 3); the term O(E 3) in the solution for v within the shock wave

does not satisfy the boundary condition associated with undisturbed flow at
3

the wall. It is possible that this could lead to corrections of O(E ) in the

displacement thickness downstream of the shock wave and thus to corrections

in second and higher order terms in the solutions for u downstream of the

shock wave; these corrections are not considered here.
2.

If eqn. (3. 16) is used for a in eqn. (3. 13a), eqns. (3.8) with Pr = 1

are used for Re , and the boundary conditions to each order of approximation

are obtained from eqn. (3. 17), the following results are found for u and v

written, as in the inviscid flow case, in terms of asymptotic expansions:

2 3
a 1 + CuI + E 22 + E 3 +... (3. 18a)

v = 2 v2 + E 3 v 3 +... (3. 18b)

where uI is given by eqn. (3. 3a) and

2

u = 2 +h v f'y (3. 19a, b)
2 X2

C 2  mu I

h [fi, + u2 3) + + (3. 19c)

4 2 2 3

u 3 = (Y +1)[ulf"(Y= - I-) + y u + g (3. 19d)
3 24 12 -7
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3(yl (~~ftU 2lx+ -_i "(l2-'v) 3

40 1 18 xx 4 36 1u1

2, 3"-31)C - m( 2 - + k(Y M l))Ux

2 3 I2

2 (C2 + mul )  (f 2
I -- + +(-+ ) + f
a 90 2(C(2 +1 2

21

- n ((f +(i -3)u 2 + (C 2 +mu ) +3 1 u 1  X 1lIX

x

-u j (lx 2 dx} - C3] (3. 19e)

x
so

v (,y +1) [ -- (y3_y) + 1u ]x (3. 19f)

Thus, the solutions are similar to the corresponding solutions in the inviscid

flow case, the difference being the terms depending upon m. The same nota-

tion is used in the two cases, for h and g; there should be no confusion since

either inviscid flow or viscous higher order flow solutions are employed ex-

clusively in any given case. As in the inviscid flow case, constants C and

C3 are arbitrary and may have different values upstream and downstream of

the shock wave, denoted by subscripts u and d, respectively. In the integral

in eqn. (3. 19e), the lower limit may, of course, be chosen arbitrarily, the

choice being reflected in the value of C 3 as boundary conditions are applied.

Here, the choice is x., the position of the shock wave; upstream of the

shock wave, the integral has a negative value and downstream of the wave

a positive value. Since only the lowest order value of the integral is required

here, x is replaced with x . Again, in eqn. (3. 19e) k refers to the expo-s so

nent of the temperature in the expression for the viscosity, taken to be

;' : (3.20)
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2
It may be noted that if k = 0(e2), then u2 would be independent of rn

and only linear terms in m would occur in u 3 . 1/2

In order to consider the flow in the region of order e in thickness

downstream of the shock wave, it is necessary to know the flow variables just

downstream of the wave. In the inviscid flow case, the jump conditions

across the shock wave supplied these conditions. In the present case, it is

not clear that the jump conditions hold; their validity must be checked. In

this regard, the continuity equation (p u) + (p v) = 0 provides a simple

test. Thus, if this equation is integrated across the shock wave, then the

jump in p u, indicated by [p u], is

[pu] O(k (pv))

since p = 0(l) and v = O( 2), [pu] = O(ksc ) = O(C ). Thus, the divergence

of the streamlines within the shock wave begins to affect [p u] in third order

terms. However, from eqn. (3. 5d), it is seen that the third order terms

in pu involve second order terms in u. Hence, for k = O(c), the jumps

conditions break down in second order terms; the shock wave is a Hugoniot

shock to first order only. As a result, solutions valid within the shock wave

itself must be used to continue the solutions across the shock.
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(b) Solutions in Inner Structure Region

and Calculations of x o and xt 1

The following sketch shows the various regions under consideration,

/A1ER Sr7uLcr&4ee INNER 4 D4U7i, EVr
R541G/ON

V ER our

!1 I
- t II

O(-" O Ej

and the orders of thickness of the inner regions. Thus the outer regions have

lengths of 0(1). The inner adjustment region, employed also in the inviscid

flow calculations mentioned previously, has a length scale of order E ;

the inner structure region has a thickness of order k in general, so that forS

the present calculation, its thickness is 0(c).

Because the length scale in the inner structure region is the order of

the thickness of the shock wave, the independent variables in this inner region
4+ 7+

are taken to be x and y where

x-x (y) +
x k y =Y (3.21a, b)
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and where xI (y) is the location of the sonic line within the shock wave. That

is, in general, the sonic line is chosen to represent the position of a shock

wave with finite thickness, and the distributions of velocity, pressure, etc.

are written with respect to the sonic line. In the limit as Re - co and

k -- 0, it is clear that x, = Xs, the location of the shock wave in the inviscid

flow solution. Hence it is seen that a similar expansion may be used for x

i. e.,

x" =1 +- ex 1 +  + CE x 113/2 (y ) + C2 x 12(Y) +. (3.22)

The goal, then, is to find x1 and x in terms of m; as m -0

(ks/C - 0) xI  x s and x15o 5so 1 - sl'

If the outer solutions upstream and downstream of the shock wave are

expanded about x and written in terms of inner variables, the following re-

suits are found:
2x +) l x

u u((X) + E((x + mx)u(x) + u (x ,y) + (0,

5/2 +*
+ (x 3 / 2 u(x 1 0 ) + (x 1 

+ mx ) (0, y )

+e~ 3/{xl Iu(x o I I X+) [
+ 2

( +mx )++ C{x12 i (x102 Ulxx (xI o ) + (xL I + r~x+)u 2x (x o0 Y)

3 11 +ni
*• (x 1 1 +mx+b *

+ x 13/2 X*x*(O'Y) + 2 X* X* X* (0, Y)

u3(x1 o0Y) 
+  . (0, Y)} +... (3.23a)

2 5/2 0
v C f (x 1 0)y + (0,Y)

+(x +m= )(f"(x 1 o) + ,(0, y)) +v 3 (xo, y)} + ... (3. 23b)

where the expansion for x! (eqn. 3. 22) has been used and where it has been

anticipated that a composite solution similar to that used in the inviscid flow
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problem will be necessary. Thus, and Y are the second and third order

potential functions, respectively, which are needed in the inner adjustment

region downstream of Lie shock wave; they are both zero upstream of the

wave. Anticipating, further, that the lowest order terms in the relations

for the locations of the sonic line and the inviscid flow shock wave are the

same, xso x 1 , it may be noted that the notation introduced previously

for functions of x will be used in evaluating equations (3. 23) in what follows;so

i.e., f(x I °) = fo, ul(xI o) = ulo upstream of the wave, etc.

In view of eqns. (3.23) and (3.21), it is seen that in the inner structure

region, the expansions for u and v and the derivative transformations are

1 2 + 5/2 3+
u = C + uI +Eu + C 5/2 + 3+ (3.24b)

2 + 5/2 + 3 +
v v + v/ + v 3 +. (3. 24b)

ax k + ay k + (3.24c, d)s 8x 5 a+ y

where

32 C 3/2 +  12 (3.25)

If eqns. (3.24) and an expansion for H t are substituted into eqn. (3.15), with

Pr = 1 and M' = 0, it can be shown that within the shock wave

H T + 1 ( +) (27/26

Ht -Y -1 + (u + v  2(-Y -1) + (C(3.26)

so Ht = constant to the order retained; thus, expansions can be obtained
2

for T = a in terms of the velocity components. In the same manner, eqns.

(3.13c) and then (3.13b) can be used to show that within the shock wave, for

the case considered (ks  O(), Pr = 1, ' = 0)

AS = 0(C2 )  (3. 27a)

v -u O(C 5/2 (3.27b)
y
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5/2
It may be noted that C is at most O(E ); i.e. this is an order estimate of5/2
C2 and not a solution so that the term of order c could be zero in which

case 0 would be of even higher order. If eqns. (3.24) are substituted into

eqn. (3.27b), it is found that

+ +
v = mu. + (3.28a)

+ +
V+ =x 3/2Ubc+ (3.28b)

+ + +

v = mu - x1 u+x 12+
3x + 2y x

If, as will be shown later, u 1 = u (x+), then v2 = v2(y+); also, the equation
+1 +

for v5 2 is easily integrated. If these two results are written for x - 00

and x -* - oo and matched with the corresponding outer solutions calculated

from eqn. (3.23b), it is easily shown that

+ +

v2 = fo ° Y  (3. 29a)

v5/2 = x 3/2 (uo10 -u1 (3.29b)

I 1 C (3. 29c)
13/2 2 0  y(O, Y)

It is seen that eqn. (3. Z9c) states that to lowest order, dx I /dy = v/[u]

where the brackets indicate the jump in the quantity enclosed across the shock

wave at the point in question. Of course, the shape of a discontinuous shock

wave is given by the same equation. Thus, even for this thick shock wave

case, the differential equation (lowest order) for the location of the sonic

line within the shock wave is the same as that for the location of a discontin-

uous shock wave (i. e., shock in the limit as Re - co), with the same condi-

tions upstream and downstream of the wave. This is indicated by the fact

that xi 3/2' in eqn. (3.29c), is independent of m. Of course, it still

43



remains to calculate the value of x1 at y =0, i. e. x1 o,x 1  and x 3/(0)

before one can say that the location of the sonic line gives the location of the

shock wave independent of Re.

If the expansions for u and v, eqns. (3. 24a, b) and (3. 29a, b) and the

inner variable transformations, eqns. (3. 24c, d) are substituted first into

2q

eqn. (3.26) to obtain a2 , and then into eqn. (3. 13a), the following governing

equations are found for the u.i

++ +
lx lx x

+ + 0 +
Ul )++ F U +Q ++)x+ + 2u++ (3. 30b)

u n"2 1U (3+3c

(U1 +u5/ 2 ) + N +y 1) XI" 3/2 (ul0 - u) 5/Zx + (3 3+c

u + 2 + 2

(XI 3 2 + x- +fI

+(7 U )12 0+ +++ u

i C 3x + 2x+)x+

+ (72 1+) + + 2u 1+U+ ++ + 2u u 2u ++

+- (+1) +2 + S++ +(r s to c 1 ue 1 x at + x + + 2lo 1  " an xlx+(02

+n uv +uf++o+ (3. 30d)
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where S + is the lowest order term in the expansion for the entropy and arises
2 p

from the expansion for p in eqn. (3.13a). Thus,

1

p = Ty' - I e-AS

and if eqn. (3. 26) is used to find an expansion for T in terms of the velocity

components, and ifS = S + 2+ + ... then it is found thato 2

P 1 : -u + (3. 31a)

+ 2+ ( (3. 31b)

Finally, from eqn. (3.13c), it can be shown that the differential equation
+

for S2  is easily integrated to give

S + = (+1)u+ (3.3Z)
2 (Y +1) +

Ix

where the function of integration is found to be zero from matching consider-

ations.

The solution to eqn. (3. 30a) is the well known Taylor solution,

+ +
u - u tanh r (3. 33a)

+ 10 +
r - x (3. 33b)2

where the constant u10 in eqn. (3. 33a) results from matching with the first
w+ (-)

order term in eqn. (3.23a) in the limits x - - , x -x and x -+ o,

X " .X 0• In general, eqn. (3. 33b) should include a function of integration,

+ u10 +
r 2X + G(y).

However, if a composite solution is formed from the first order inner and

outer solutions and the condition is enforced that at the sonic line
2 2 2

u+ v = a , which reduces to u = 1 for terms up to first order, it is easily

shown that G(y) = 0.
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The solution to eqn. (3. 30b) may be written as follows:

mfo +2 +
+2 =f + + (1 tanh r 8

+otanhrh r)

2 r- +  +( - 0+12 oh +osh 8

r__ r_ . In coshr

2Zcosh rJ ins 2r

2 r in cosh r+
+ u 0 2cosh 2 r +

g4 (y) f + r~ 5 y
- ( n r + 2 + (3.34)
U0 cosh 2 rJ cosh r

Then eqn. (3.28c) may be employed to find v3 . Thus,

+ 2 g' 4  r+ tanhr + 2m tanh r+v3 - Ul r uan 1 0-g anri

110

1 2'1+ + g7 (y) (3.35)

where in eqns. (3. 34) and (3. 35), the g,(y) are functions of integration.
+

Equation (3. 35) may, then, be used to calculate v +which is needed in order

to solve eqn. (3. 30d) for u3 .

At this point, it is convenient to use the solutions found so far to illus-

trate the manner in which the conditions downstream of the shock wave can

be found and to calculate x i 1 That is, as indicated previously, the jump

conditions across a discontinuous shock wave hold for the present "thick'

wave only to first order. That they do hold in first order is shown by corn-

paring the jump condition with the first order inner structure solution, eqn.

(3. 33a); the inner solution indicates that as r + goes from - co to + oo,
+ +

Ud - u in agreement with the jump conditions. Now, the outer

solutions evaluated at the shock wave position satisfy this first order condition

46
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because u1 may have either a positive or a negative value. As mentioned

previously, in the case of inviscid flow the second order jump conditions

are not satisfied by the outer solution; as a result it became necessary to

consider the flow in an inner adjustment region. In the present case, al-

though the Hugoniot jump conditions no longer hold across the shock wave

to this order, the second order inner structure solutions are used to obtain

similar conditions, which again are not satisfied by the outer solutions.

Hence, an inner adjustment region is still necessary. In summary, then, 1'
the essential difference between the present analysis and that employed in

the inviscid flow case is that here, the higher order flow conditions down-

stream of the shock wave, used as the upstream boundary conditions for

the flow in the adjustment region, are found from solutions in the inner

structure region.
+ +

As r -- + oo, then, u2 becomes:
2

+ 2 mnI 1 + 1 u 1 0  g4 (y)
- T(-+) (r +) + - + - r+ --- ) (3.36a)
u 10 u1 0

+ 2 ( o + 1 2 8u 10u2 Z (+l) (r -) + - u-- (r+" -+o) (3.36b)

If these equations are matched with the corresponding outer solutions, calcu-

lated using eqn. (3.23a), one finds the following relations:

_______o g4 (y)f, 1 u0 C.__

'ho(Y +) U1o fo( l)" ') +  - C2  (3.3a

x f'o 8() 2 2 C

11 0 4 2 (u.o Zd *

o + " ) + 3 + " - * (0, y) (3. 37b)
u01 0  o12 1

Hence,
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2 I 2 + C 2d-C 2u
(0,Y) V -0(Y " +(3.38)

x u31

which is the same result found in reference 2 for the inviscid flow problem.

Here, just as in reference 2, the outer velocity components downstream of

the shock wave are expanded about the lowest order position of the shock

wave, xE o' and thus in terms of x ; then * and are added to these ex-
x y

pansions. The resulting expressions are used for the velocity components in

the inner adjustment regions in which the flow variables change from their

values immediately downstream of the shock wave to forms given by- the outer

tchannel flow solutions; the additional potential function (x , y) provides

these variations. It is not difficult to show that in the present problem,

because the expansions for the outer velocity components differ from their

counterparts in the inviscid flow problem only by constants, the governing

equation, boundary conditions, and hence solution for (x , y) (eqns.

(3. 3e) and (3. 3f)) are the same as in reference 2. Thus, since satisfies

a Laplace equation and the normal derivatives on the remaining boundaries

are zero, the condition

1 *

f (0,y)dy = 0
0 x

must be met. When this condition is applied to eqn. (3. 38) the results are

C C - 3  (3. 39)
2d 2a 3 10

and

-( ) ftl(y ) (3.40)
x

which are the results found in reference 2. It is worthwhile to emphasize

that the results found in eqns. (3.39) and (3. 40) are not found if second order

shock wave conditions are used to evaluate conditions downstream of the wave;

again, the 14ugoniot jump conditions simply do not hold here.
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Now, eqn. (3.39) involves ul0 = uI(xt °) and thus may be used to find

x 1o, That is, by choosing the arbitrary constants q u and C2 d, one can

calculate al0 and from eqn. (3. 3a), then, x, o, for a given wall shape and

c w . Because eqn. (3. 39) is independent of m and in fact precisely the same

as the equation found for the infinitesimally thin shock wave , it is clear

that

x = xso (3.41)

i. e., to lowest order the location of the sonic line within the shock wave

and the location of the shock wave under the same flow conditions except

that Re - co, are the same.

It should be noted that a composite solution involving and the outer

velocity components may be formed, just as in reference (2); in fact, such

a composite solution written to third order in u and thus involving a third

order potential function, ?7 (x , y), has been used to write eqn. (3.23). In

this regard, eqns. (3.13c) and (3.13b) can be used to show that £2 = O(e 7 / 2

in the inner adjustment region, to confirm that a potential function does

exist at least to 0(E 3 ).

In order to find x i' it is necessary to follow the same procedure as

was used in calculating x 1' except that now third order rather than second
+

order terms in u are employed. That is, the solution for u 5/2, is not in-
+

volved in the solution for x I I; it is necessary, however, to find u 3 .
+ +

The governing equation for u3 is found by calculating v P eqn. (3. 35),3 ~3+
and substituting this relation into eqn. (3. 30d). The resultinvequation may

be integrated once without too much difficulty, to give,
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u + 2(tanh r+ )u +1 +2 +)2+
u + (ah~ 3 -((u 2 -3 (r U2 +)
3r+ u1 0

+m 8mg
(Y + I) 4 f t tanh t dt

uO 0
L 10 0

-._ 2 ,, ' ln coshr .... g

+ 4 +

+ (x 2) tanh r -- ( -1)f' ln coshr+
m 13/2u 0

~+ +-u+ + (4U3o +u 4
- l2+2 l) - 4

10

+nh+ + 3) + +

u 10 ( + 1) 4 10 Ir g8

(3.42)

where M I and A2 are found from eqn. (3.20), with the terms in the expansion

for T calculated using eqn. (3.26). Another integration of eqn. (3. 42), to
+

find u 3 , would be very difficult if not impossible. Fortunately, the desired

information can be obtained by using eqn. (3. 4 2 ) . First, the expressions to
+ +

which u must match as r -- + o are found from eqn. (3.23a). Thus,
+ + + +

u 3(r - - o, y) and u 3(r - + oo, y) are known. If they are used to evaluate
+ +the left hand side of eqn. (3. 42), and the known inner solutions (u and u

+
are used to evaluate the right hand side, in the limits as r -- + o, the re-

sulting equations can be used to obtain a relation for x I I That is, from

The author is grateful to Professor Messiter for having suggested the pro-

cedure used.
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eqn. (3.23a) it is seen that

+ +2 +
(u) A (x ) + B x +C (3.43)

3 u, d ui,d u, d u

where the su~bscripts u and d refer to the limits r = 0 and r =+ Co

respectively, and where

2
A = m lxx (3. 44a)

B = mxc1 u + m(u(3 44b

2

Cu x12 Ixo +T2 lxxo +x 1 1 (u 2xJ + u 3u (3. 44c)

ff
t (fI

0 0 (.4d

ulxo N = I 2 3(34d( 1 0  + +1) u
10

In addition,

Ad m 1-U 1 ,o +~ *(O,y)I (3. 45a)

B d =mx 1 1I -u + xo * * * (0, Y] + m(1 2x)d (3. 45b)

C d x~ I ux ++:- * * * (0,y)]
2 u~xx o

+x 11(u 2x )d +x 1 3/2~ * 0 Y) + 3d
x x

+ 77 ,(0, Y) (3. 45c)
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In eqns. (3. 44) and (3. 45), the subscripts u and d used with outer solutions

refer to values immediately upstream and downstream of the shock wave

respectively.
+ +

If eqn. (3. 4Z) is evaluated at r - - o and r - co, as described above,

and coefficients of like powers of x+ (i.e. r +) on either side of the equation

are equated, one obtains six equations, three for each limit.

The coefficients of (x+)2 give equations which are identities, and the

coefficients of x give equations which may be used to evaluate g' 7 (y). It

is the constant terms which involve xI I; they are found to be:

2B. g4  2 r
1110 0 L94u~ - 10 2]01+ 2C. - + -- + - 3uUl10 1 Ul10 -(- +I)U 0 -- U 1 0 (Y + 1)U 2

0 0 1

2]
+- +u" + 4m. ln2 _2 mg 5

u- o 10- o - + "  3) f 0
1 U0

2(x)3/2 )( ( - 3)u 2o 2h(N - )rf'
,,/2) 10_+ g_+ 0 (3.46)

+ (+ 1) 4 g8 
+ ( + 5)u10

where the subscript i = u when the upper signs are used and i = d when the

lower signs are used. When one equation is subtracted from the other, then,

one obtains

I(B - Bd) (Cu+Cd) = 2 o 2 (x, 3/2 (3.47)
u 10 u d( + ) +1)

The desired relation is found by substituting for Bu, Bd, Cu t and Cd from

eqns. (3.44) and (3.45), using the known outer solutions (eqns. (3.19)) to

evaluate (u2x)u, u3u, etc. After considerable algebraic manipulation, it is

found that
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2 L**x i f o|,,, (21..)

iV VfI (f1) 2

( ( 2 '3) 0 0M) +(0+) 0 + 2

(C o

"3 ( t -3)-y + 1) +  2Cd " C-)o3 + 2m 0 2

(,Y + l)u 0  (,Y + l)u 10 o (y + l)u 10

+ + 1) + %iY_ d_{ ) 1 xx u xxd 24 12

+ (+I)xxu +  6 x d 2- + (xu x (xd

(C2 +C fd)' mi' 2 (x3
+m 2u2 0  +2 04 1) 4 - 3+1) - 0 (3.48)

where gx is given in eqn. (3.19e), g4 in (3. 37a), and C in eqns. (3. 3e) and

(3. 3f).

At this point, in the second order calculation, the integral condition

on * (0, y) was used to derive an equation from which x could be found.

In eis third order calculation, the same procedure is followed, the integral

conditions being represented by 'l, where

1 - - (0,y)dy (3.49)
0 x

In general, the governing equation for r7 will be a Poisson equation, with

any forcing function depending upon lower order, known functions. Hence,

although the solution for I1 is not given here, it is clear that it can be cal-

culated without the necessity of performing any more calculations in the

outer or inner shock structure regions. If eqn. (3. 48) is integrated, then,
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from y = 0 to y = 1, and in the resulting relation, eqn. (3. 39) is used to sub-

sti!.Lte for CZd, one finds finally the following equation, from which x 1

may be calculated.

C 3d C 3u +2 2y 3C )
2 x u 1 u 10 o

(-Y +I) 'Yo 2 + + 1) +uO 1011 (3.50)
u 10

If eqn. (3. 50) is compared with equation (3. 6b), it is seen that all

of the terms in the inviscid flow solution are contained in eqn. (3. 50). In
2

addition, there is a term depending upon m, one involving x2 1. and one

containing I. The following conclusions can be reached.
(i) As m- 0, and thus for Re >> c - (k s << 4E) the solution for

x'1 must reduce to that for x sl; the location of the sonic line

is independent of Reynolds number through terms 0(E), and

thus is the same as the location of the shock wave as Re - co,

to this order.

(ii) Although the Hugoniot jump conditions across a shock wave do

not hold to the order needed, for Re = O(E 2) and therefore

ks = 0(e), it is possible to derive a solution for x 1 for this

thick shock case.

(iii) Although it appears that xl 1 depends upon m and thus upon

Reynolds number for k = 0(), this is not necessarily the
s

case. That is, in all probability, I1 depends upon rn also;

this dependence could be such that x is independent of m.

Support for this possibility is given by the fact that to lowest

order, dx I/dy is independent of m and thus dxI /'dy = dxs /dy.

to this order. If, indeed, xI is independerl of m through terrr.s

O(e), the location of the sonic line in the "thick' shock waves

found in numerical solutions in channel flows could be used to
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locate the shock wave in most practical cases even with the

inclusion of artificial viscosity. In addition, if this result

is indeed found, extension to more general flows and high

flow Mach numbers should be considered.

Finally, it should be noted that composite solutions can be formed in-

cluding now the solutions valid in the inner structure region. In doing so,

it would be necessary to write the solutions in two parts, one for x < xl

and one for x > x .

Shock Wave in the Neighborhood of the Throat

In the work described in the previous sections, the shock wave was lo-

cated in the channel a distance 0(1) downstream of the nozzle throat. The

question arises as to the validity of these solutions as a sonic nozzle throat

is approached and the flow Mach number tends to unity. Because the wall

shape at the throat is such that, in general, f(O) = f' (0) = 0, then in the

neighborhood of the throat

2f(x) = -- f"(0) +..

i.e., the wall shape is parabolic. Hence, in investigating the throat region,

there is no loss of generality in considering a parabolic wall such that the

channel flow solutions are,

f(x) = bx 2  (3.5 1a)

Ul + 1 x) +Bx; B= /T2 (3.51b, c)

v 2  2bxy (3.5 ld)

where u 1 , with cw = 0 because the flow is sonic at the throat, is given by

eqn. (3. 3a) and v2 by eqn. (3. 19b). With the above relations for u I and v2

2u = 1 + Bx +... v = C 2bxy +... (3.52a, b)

and so if x O(a), say, in the neighborhood of the throat, then, expansions
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2
for u and v would be such that u = I + O(EUa) and v = O( ca). Because,

from equation (16), it is seen that

2
a = 1 N (u-i) +... (3.53)2

2 2
so that u - a = (y + l)(u-l)/2, the important terms in the gasdynamic equa-

tion (3. 13a) are found to have orders as shown in the following, where the

order of each term is shown beneath it:

2)U2 2 1 i

(u -a2 - a v I[uR(u) - )-)R(H)]
" y Oe

a 2(a 2
2 Re at

Thus, the terms on the left hand side of the equation, those which are asso-
2

ciated with channel flow solutions, are O(E a). The viscous term on the

right hand side, generally important in lowest order solutions only within

a shock structure region, is O(e/R-ea). As long as a >> (Re ) -1/2, the

viscous term is negligible, and the channel flow solutions hold in lower

order; the viscous term could only become important in a thin shock structure

region imbedded in the region in question, so the solution essentially remains

that illustrated in the previous sections. However, when a = OII(Re E) -1/2 ,

then all three terms are of the same order. The solution is not that given

previously, and it is this case we wish to investigate.

The region under study in the neighborhood of the throat is thus of

order a = OrRe c) - 12 in thickness and so we define an inner variable and

velocity expansions as follows:

1(3. 54a)

u I+a(,)4.. 2 A 1 ( y 4... (3.54b, cJ
u +ccu ,Y) +.. v C a v ,Y) +(354,c

Because M2 
- 1= O(u - 1), and a can be written as a O[(Re Ea) 1, it

is clear that
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r r

a 0

and thus that a is a measure of the thickness of the shock, which fills the

whole region here, just as k measures the shock thickness in the previous

analysis. Hence, we define a in the same general form as k ;
s

1f + (3. 55)

Re ca (N +1)

If eqns. (3. 54) and (3. 55) are substituted in eqns. (3. 10) and then in eqns.

(3.9c), (3. 13c), (3. 13b) and (3. 13a), it is found that

R(u) = O(c/a) = R(H) R(v) O(c) (3.56a, b,c)

H ,+ 1 2)Z
Ht 2 ) + O(c 2a (3.56d)

As = O(E 2 a 2 ) (3.56e)

SO(e 2 a 2 ) (3. 56f)

and finally that the governing equation for u is,

a a 1u = a (3.57)I1 1 ('Y+) ly l

Thus, the lowest order governing equation is the viscous transonic equa-

tion. (10)

If n = v - u is evaluated, using eqns. (3. 56f) and (3. 54), the

result is, to lowest order in each term,

(A A

2 a 1 22_ ... - Ea - + ... aO(Ea2 ) (3.58)
A a yax a

( 10)Cole, J., Problems in fransonic Flow, Ph.D. Thesis, California
Institute of Technology, 1949.
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Thus, from eqn. (3. 55), the orders of the two terms are c and

If the Reynolds number is large enough, that E >> Re -I/2 , then

A = 0 or (y), and such a solution cannot satisfy the matching
conditions given by the outer solutions for the v velocity component, eqn.

2
(3.51d). Moreover, for this case, a = (Re) - -2 C Now, if the

outer solution for u is expanded for x << 1 to second order, again for

wall shape and u as given in eqns. (3. 51) and with u2 as given in eqns.

(3. 19a) and (3. 19c), we obtain
f,, + c2 + m))

ufr I + E+ bx +... + E 2 (10(y2 "1) + 2 i n

Thus, as x - 0, the second order term becomes the same order as the

first order term for x = O( 1/2) and x = O(c), indicating the possi-

bility that solutions in two more regions should be considered. However,

it was shown in reference 2 that it is possible to write the solution for u

in a form such that the singular terms in u do not arise, being contained

in u 1 through the use of an expansion for C . Hence, solutions in the

region 0(e 1/2) in thickness do not differ significantly from the channel

flow solutions already being used. However, in the thinner region

x = O(c)), it is clear that the flow is two dimensional even in lowest

order and thus quite different from the outer channel flow described by

eqns. (3. 19a) and (3. 19c); the governing equation for inviscid flow is the

nonlinear transonic small disturbance equation. Hence, for a << 4,

the throat region under consideration would be contained within the region

of order e in thickness and the " outer' solutions to be used for match-

ing would be the solutions in the latter region, not the outer channel

solutions given in the previous section.

If a = 0(), then V = y and a velocity potential may be intro-
Ix ly

duced into the viscous transonic equation (3. 57); the lowest order solu-

tions for u are two dimensional and the outer solutions to which the inner

solutions must match are those given in eqns. (3. 52a, b).
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Ai

Finally, if a >> C, then from equation (3. 58), u 1 0, so
-3

= I this case, for which Re << 4E is the condition, the ve-

locity components must match with the outer solutions, eqns. (3.52a)

and (3.52b) as jxj-0 and I~x - co. The Reynolds number under con-

sideration, Re = O(c -2) so that a = O(C /2, fulfills this condition and

so it is this case which will be analyzed here. It will be shown that it

is possible to derive an exact solution to the viscous transonic equation

for an arbitrary (parabolic) wall shape.

It may be noted that because the whole idea of these calculations

is to derive solutions comparable to the thick shock wave results found

in numerical solutions, it is necessary to consider a Reynolds number

small compared to those associated with typical channel flows. Never-

theless, the solutions to be shown are of more general interest than the

limited Reynolds number range would indicate. That is, they may be

used to illustrate the manner in which a shock wave forms at the throat

and then evolves into a thin wave as it moves downstream in response to

a pressure condition imposed on the flow downstream of the shock wave.

Thus, the solutions will match not only with the outer channel flow solu-

tions when the shock wave is within this inner throat region, but also

with the solutions including the shock structure when the shock wave has

moved downstream of the throat into the overlap region.

For the case considered, then, Re = O(e " ) and from eqn. (3. 55),-2

if the same constant of proportionality between Re and e is to be used

as in the previous section (eqns. (3. 8) with k5 = me),

a (me) 1/2 (3. 59)

A AA

Now, from eqn. (3. 58), uI =  I ) and so from eqn. (3.57),

v^l = F (x), so
Vly I

Ol FI ()y + F ( ) (3.60)

Also, as c xav +'"(with v1 as in eqn. (3.60)) must

match with eqn. (3. 5Zb), written in terms of inner avariables. Hence,

F2 (q) = 0 and Fl( ) 2b so that apparently
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Av bxAy (3.61)

throughout this inner region, subject to the boundary conditions at the wall

being satisfied. These conditions are given by eqn. (3. 17) with

= I + C f(x) = 1 + C bx , where eqn. (3. 51a) has been used for f(x).

Thus, the boundary conditions at the wall reduce to
Ar

^ (, + 1) = +2bxA  (3.62)

and are indeed satisfied by eqn. (3.6 1).

As noted previously, yw is taken to include the displacement thickness

of the boundary layer. Again, the effects of the interaction between the shock

wave and the boundary layer may be estimated using the solutions valid within
(9) I

the boundary layer in an interaction region and the orders of the velocity

perturbations (Ea for the u component and e2 for the v component) in the

flow outside the boundary layer; again, it is easily shown that these effects

are small compared to the change in displacement thickness of the undisturbed
2 A

boundary layer over the interaction region. Since E a v the lowest order

solution for v within this thick shock region, satisfies the boundary condition

associated with the undisturbed boundary layer displacement thickness, it

is only in higher order terms that corrections might be needed (e. g., terms

O(E2 )a 2 O(C 3)), because these boundary conditions were not satisfied.

Such higher order terms are not considered here.
AAWith vI as given in eqn. (3.6 1), the governing equations for u eqn.

(3. 57), can be written as follows:

A
A 2bx A
u qA- UAA1 ix (+ l) lxx

which can be integrated once to give

A
2

u 2A2
A I B xu 2- - 2BA (3.63)2 2

where the constant of integration has been written as -2BA for later
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convenience. Equation (3.63) can be transformed 0 ) into a standard form of

Weber' s equation, the solution of which can be written in terms of parabolic

cylinder functions 1 . In terms of the standard solutions, U(A, X) and V(A, X)

given in reference 12, where

x, (3.64)

the solution for ul may be written in two parts. For Ax > 0,

Au 1 X[U(A, X) - C 1 V(A, X)I + (2A+1) U(A+1, X) - C (2A-1)V(A-1, X)

U(A,X) + C V(A,X) (3.65)

Aand for x < 0

A
u - U(A+I, -X)

= X (2A+l) U(A, -X)(3.66)

where in order that the solutions agree at X = 0,

2r (- - A) tan [7r (-L + I
2 4 2

Cl 1 2 1 A,(3.67)
12)

tan [( ( 4 )]

In eqn. (3.67), r(z) is the Gamma Function( 12 )

Equation (3.63) was obtained and solved first by Kopystynski and

Szaniawski ( 13) in their study of flow in a nozzle throat. They wrote the

solution in terms of confluent hypergeometric functions; the solution here,

written in terms of parabolic cylinder functions is equivalent to theirs and

somewhat more convenient to use. It is interesting to note that Kopystynski

and Szaniawski showed velocity distributions which appeared to be those for

( 1 1)Murphy, G. M., Ordinary Differential Equations and Their Solutions,
Van Nostrand Company, Inc., 1960.

( 12 )Handbook of Mathematical Functions, Eds. M. Abramowitz and I. A.
Stegun, N. B.S. Applied Mathematics Series . 55, 1964.

( 13 )Kopystynski, J. and Szaniawski, A., Structure of Flow in a Nozzle
Throat, Archiwum Mechaniki Stosowanej, 3 17 (196 5), 453-466.
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very thick shock waves but did not evaluate their solution in the limit as

this relatively rapid variation in velocity moves downstream of the throat.

Thus, they did not show that this solution evolves into that for a thin shock

wave across which Hugoniot jump conditions hold. It is this point which

is the subject of the present section.

It is possible, then to write an exact solution for u, in terms of known

functions. Now, eqn. (3.63) is a relatively simple first order nonlinear dif-

ferential equation which it is quite easy to integrate numerically using only a

programmable hand calculator. Nevertheless, the analytical solution is use-

ful in that it may be used to demonstrate that it becomes exactly that given

in the previous section as the shock wave moves downstream of the throat.

The expansions necessary for matching with the outer, channel flow

solutions, are found by writing U and V for XI >> 1. From reference 12,

one finds that for X large and A moderate, for X I A,

S-A(A+
U(A, X) - e X + (3.68a)

22

2X 2

1 1 3

V(A, X) e X I+ +(3.68b)2X 
2  .

Hence, from eqns. (3.64), (3.65), and (3.66), as x co

A A (2A-1) +... (3.69)
1 A

x

A
'C

Equations (3.69) and (3.70) can be checked by substitution into eqn. (3.63)

and, indeed, could have been derived from it. Now, the present solutions

hold for the case where the shock wave is in the neighborhood of the throat.
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Although the flow upstream of the throat could, in general, be either subsonic

or supersonic, we consider here the case where it is subsonic. Hence, as

- - co and -- + co, the inner solutions should match with outer channel

flow solutions which are valid for subsonic flow upstream of the throat and

subsonic flow downstream of the shock wave, respectively, both written in

the limit as x -* 0. For the solutions valid downstream of the shock wave,

this means also that x -- 0 and as a result, u 1 0 -- 0. The required outers0

solutions are found from eqns. (3. 18a), (3. 19a), (3. 54a) and (3. 59), using

eqns. (3. 51) for f(x), and u . Thus, for x -- 0 from upstream of the throat

U Ax + 2 u  +  m B

U = 1 ( Bx + A m (3.71)
mBx

and for x - 0 from downstream of the throat,

A C2d - mB
1 - Ea Bx + J +... (3.72)

mBX

Awhere both equations are written in terms of the inner variable x. M.1atching

the inner and outer solutions, one finds that,

C 2mBA = Cd (3.73)
2u (373

If this result is compared with that given in eqn. (3. 39), it is seen that for
A 1 /2 AU10 = Bx = 1 Bx = (me) Bx , the two results agree, in lowest

order. Thus, in the throat region, choosing a value for C2d = C2u is

equivalent to choosing a value for A, and as will be seen, this means setting

the location of the shock wave just as in the outer region.

For A = - 1/2, C1 = 0 (eqn. 3.67) and the solutions for u I (eqns.

(3.65) and (3.66)) reduce to

A A
B 1 X = Bx (3.74)

This is the solution for a flow accelerating from subsonic to supersonic ve-

locities with no shock wave; that is, any shock wave which might occur is

positioned downstream of the throat region under consideration. On the other

hand, for values of A greater than - 1/2, solutions for u 1 show shocklike
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behavior, as illustrated in figure 2. The solutions in figure 2 were found by

integrating eqn. (3.63) numerically, with an H. P. 29C programmable cal-
Aculator, using eqn. (3.70) to obtain initial values for u 1/-. They could

have been obtained also by using eqn. (3.65) and (3.66) with numerical values

for U(A, X) and V(A, X) obtained from tables in reference 12. The solutions

show that there is a certain value for A, (somewhat larger than - 0. 30)

greater than which there is no shock wave since no supersonic flow exists.

The flow is simply a viscous channel flow. As A decreases below this value

and tends toward - 1/2, a shock wave forms and moves downstream. The

more closely A approaches - 1/2, the closer is the flow upstream of the

jump in velocity to the supersonic inviscid channel flow solution

AU I = \/-BX = B and the thinner is the region associated with the jump in

velocity. Downstream of the jump, the solution approaches the subsonic

A A
inviscid channel flow solution, 1 -B X = - Bx. The fact that the

Hugoniot shock wave jump conditions are not satisfied in the immediate
A A

region of the jump is clear; i.e., these jump conditions are u Id= - u

and in figure 2 it can be seen that the solutions are not symmetric about
A
u = 0.

The solutions shown in figure 2 apparently show the evolution of a shock

wave as it forms at the throat and moves downstream in response to a pres -

sure condition impressed upon the flow downstream of the shock wave.

In order to prove this contention, it must be shown that as the shock wave

moves downstream, this inner solution matches with the solutions valid

for the case where the shock wave is located at a distance of 0(0) downstream

of the throat, but written now in the limit as the shock wave moves toward

the throat. From the solutions shown in figure 2, it is clear that the inner

limit process involves A - - 1/2 as c -- 0.

The outer solutions to which the inner solution must match is a corn-

posite solution, valid to first order, formed from the solutions found in the

previous section. Thus, if the flows upstream of the shock wave and in the

inner structure regions are considered, the composite solution is the sum

of the channel flow and inner structure solutions minus the common (found
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from matching) terms.

u = 1 + Cul(x) + Cu1 +(x 
+) C 10 + (3.75)

Equation (3.75) is valid for x < x, , (x+ < 0), because the supersonic value

of ul(x) was used in determining the common term. -he corresponding equa-

tion valid for x > x1 would be u = 1 + eU l (X) + u 1 +(x 
+ ) + CUi0 +.... Now,

+3/
because x = (x-x I)/k and x= xI + ext 1 + E 3/2x + with k = 0(c),

it is seen that for eqn. (3.75) to be uniformly valid to O(c), it is necessary

only to include the first two terms in the expansion for xE, i. e.,

x, = x + cx, and this is understood to be the case in what follows.to 111

Finally, because when the shock wave is within the throat region, matching

between the inner throat region solution and the outer channel flow solutions

has already been demonstrated, it only remains to demonstrate that the

solutions match in the immediate vicinity of the shock wave as it moves

toward the throat. Therefore, the outer solution, eqn. (3. 75) is written in
+

the limit as x - xI , for x << I such that x = 0(1). Then, to lowest order,

eqn. (3.75), and u10 become

ulo
u -=1- 0 tanh (-'-- x +) + ... (3.7 6a)

'10 2

u.0 = Bx (3.76b)
1.0 to

+
where for x << 1, u1 = Bx, and where the solutions for x, eqn. (3. 33a) has

been employed.

The corresponding limit to be used in evaluating the inner solution is

X = X +X- X (3.77a)

X - X1
X << I << X 1  (3. 77b)

A L " (3. 7 7c)
2 2

W (C) << 1 (3.77d)
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When C, eqn. (3. 67), is evaluated using eqn. (3. 77c), for A, it is found that

C = T + O(W) (3.78)

Next, if eqn. (3. 78) and the asymptotic expressions for U(A, X) and V(A, X),

eqns. (3. 68a) and (3. 68b) respectively, are substituted into the equation for
A A Au valid for x > 0, eqn. (3. 65), the following result is obtained for X >> 1,

and thus x >> 1.

F x21
U I AX -2 + ..

I + (' T-7)-I X e -2 + X-2 +.

A +Now, starting with eqn. (3. 77a) and using the definitions of X, x and x

eqns. (3.64), (3. 54a) and (3.21a) respectively, one can write X as

u,
'10 _+ ___ + Fc +4TB (3.80)X = emB m 11

wherex has been expanded using only the first two terms, as mentioned

previously. In addition, eqn. (3.76b) has been used for x1  and eqn. (3.59)

for a'. When eqn. (3.80) is substituted into eqn. (3.79), it is seen that if

to lowest order

U10  0 u10 X 1  (3.81)
2mE + m

then, again to lowest order,

-u 0 x +
u= uL - eJ0t ] =1" + 0 tanh r (3.82)

where, again, r u1 0 x/2. Therefore, this solution from the inner throat

region matches the corresponding outer solution in the immediate vicinity of

the shock wave, eqn. (3.76a). Evidently, the solutions found in this section

do represent the evolution of a shock wave as it moves downstream of the throat.
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changing from a thick shock across which Hugoniot conditions are not satisfied

to a thin shock wave across which they are satisfied.

Finally, it is interesting to note that the solutions shown in figure 2 are

quite similar to those given previously for steady channel flow by Sichel (1 4 )

(two-dimensional) and Sichel and Yin (15) (axisymmetric), and for unsteady
(16)

two-dimensional flow by Adamson and Richey . In all of these analyses,

a similarity transformation was used to reduce the viscous transonic equation

to an ordinary differential equation. Then, in references 14 and 15, numeri-

cal solutions were obtained; in reference 16, numerical results were obtained

for thick shock waves and analytical solutions for thin shock waves. In all

cases, as the solution for the perturbation in u went through the jump caused

by the shock wave, it overshot the solution associated with decelerating sub-

sonic flow downstream of the shock and then approached this solution asymp-

totically from beneath. As seen in figure 2, the present solutions do not show

this feature; instead, U l varies monotonically from its peak value to the

solution for subsonic decelerating flow (U, - Bx ). This difference occurs

because the similarity solutions for simple supersonic accelerating flow and

subsonic decelerating flow are not symmetric about u 1 
= 0. That is, at any

given location the solution for subsonic decelerating flow is not the negative

of the solution for accelerating supersonic flow. Hence, these solutions can-

not, in themselves, satisfy the jump condition across a shock wave,
A = - ; overshoot in the solution results when a shock wave occurs.
u ld lu

(14 )Sichel, M., The Effect of Longitudinal Viscosity on the Flow at a Nozzle
Throat, 1. Fluid Mech., 25 (1966), 769-786.

(15)Sichel, M. and Yin, Y. K., An Axisymmetric Similarity Solution for Vis-
cous Transonic Nozzle Flow, J. Fluid Mech., 28 (1967), 512 -522.

(16 )Adamson, T. C., Jr. and Richey, G. K., Unsteady Transonic Flows with
Shock Waves in Two-Dimensional Channels, J. Fluid Mech., 60 (1973),
363 -382.
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Perhaps the most important difference between the similarity solutions

and those presented here is that the former cannot be employed for arbitrary

wall shapes. Thus, a wall must be associated with a streamline calculated

from the similarity solution; no arbitrariness is allowed. Not only does

this limit the usefulness of similarity solutions in practical applications, it

leads to wall shapes with bends or angles at the point where the streamline

associated with the wall passes through the shock wave, depending upon the

thickness of the shock wave. The present solutions allow arbitrary wall

shapes to be considered; in those cases where the streamline variation

through the shock wave is different from that of the wall (including the ef-

fects of the displacement of the boundary layer), i. e., when interaction ef-

fects are important, corrections can be added.
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Figure 2. Distribution of perturbation velocity, U1for various
values of A.
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